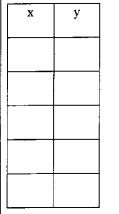
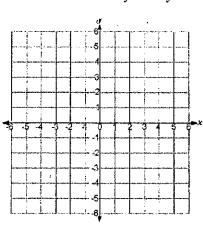

Quadratics Graphing and Functions Test Review


Fill in the blanks.


- 1. The standard form of a quadratic function is y =______
- 2. The vertex form of a quadratic function is y = _____
- 3. What is the formula for the axis of symmetry from a quadratic function in standard form?
- 4. If the vertex is the highest point on the graph, it is called a _____
- 5. If the vertex is the lowest point on the graph, it is called a _____

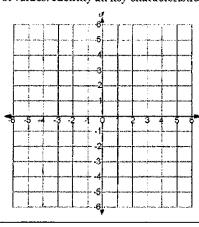
For #6-7, graph the quadratic functions to find the zeros.

8. Graph using a table of values. Identify all key characteristics. $y = x^2 + 8x + 17$

Axis of symmetry:

Vertex: ______

Domain:


Range:

End Behavior: As $x \to +\infty$, $y \to \underline{\hspace{1cm}}$

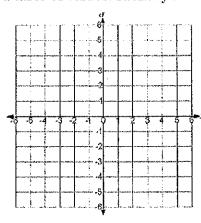
As $x \to -\infty$, $y \to \underline{\hspace{1cm}}$

9. Graph using a table of values. Identify all key characteristics. $y = -2x^2 + 12x - 16$

Axis of symmetry:

Vertex: _____

Domain: _____


Range: ______

End Behavior: As $x \to +\infty$, $y \to \underline{\hspace{1cm}}$

As $x \to -\infty$, $y \to$

					•
	~ 1 1 .	11 6 1	T 1 . 'C 11 1	3	7
	. / }		Idometric all loss	DOITDING ATOMBONO	77 — V- L 6V L U
116	i terama ngino a i	ame or values	THEILITIV ALL KEV	CHALACIEUSIUS.	<i>V</i> — <i>X</i> — <i>T</i> U <i>x</i> — <i>Y</i>
	, Giabii abiiis a c	apic of falaco	LUCCIALLY WILLIAM	OLIGITATION I	, , , , , , ,
,			ų v		$y = x^2 + 6x + 9$

10. Graph usi	
х	у
_	

Axis of symmetry:

Vertex: _____

Domain:

End Behavior: As $x \to +\infty$, $y \to \underline{\hspace{1cm}}$

As $x \to -\infty$, $y \to$

11. Graph using a table of values. Identify all key characteristics. $y = (x-3)^2 - 4$

Axis of symmetry: _____

Vertex:

Domain: ______

Range: ______

Transformations:

Without graphing, describe the transformations of g(x) from the parent function, f(x).

$$12. f(x) = x^2;$$

12.
$$f(x) = x^2$$
; $g(x) = (x+4)^2 + 5$

13.
$$f(x) = x^2$$
; $g(x) = -\frac{1}{3}(x+7)^2 - 1$

14. Parent function: f(x); g(x-2)+6

15. Parent function: f(x); 5g(x) - 8

Write an equation that shows the transformations from the parent function: $y = x^2$.

16. Translated 5 units left and 3 units up.

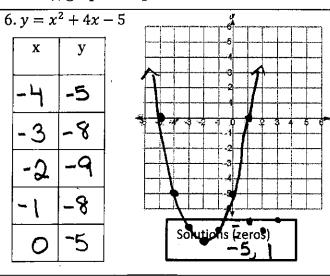
17. Reflected over the x-axis and 7 units right.

18. Vertical stretch by a factor of 4 and 3 units down.

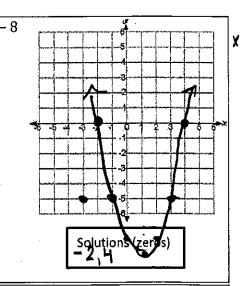
19. Vertical compression by a factor of 1/2, reflected over the x-axis, 8 units right and 2 units up.

Even/odd functions, Average rate of change, and Quadratics Review problems

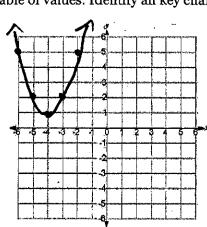
20. Decide if the following functions are even, odd, or	21. Find the average rate of change of the function
neither.	$f(x) = x^2 + 3$, over the interval $[-2, 5]$
a) $f(x) = 5x^3 + 2x^2$	
b) f(x) = 8x	
c) $f(x) = 6x^2 + 5$	
2. Rewrite the function below from standard form to	23. A square is altered so that one dimension is increased
ertex form.	by 2 inches and the other dimension is increased by 3
$y = x^2 - 22x + 5$	inches. If the area of the resulting rectangle is 90 square inches, find the area of the original square.
24. A rock is dropped from a bridge 300 feet above a river. The pathway that the rock takes can be nodeled by the function $h(t) = -16t^2 + 300$. How	25. Pam shoots an arrow upward at a speed of 60 feet per second, from a platform 20 feet high. The path of the arrow can be modeled by the function:
ong will it take the rock to reach the river?	$h(t) = -16t^2 + 60t + 20$, where h is the height and is the time in seconds. What is the maximum height of the arrow?


Quadratics Graphing and Functions Test Review

Fill in the blanks.

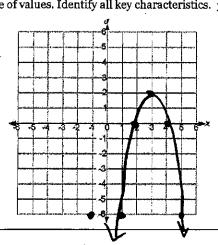

- The standard form of a quadratic function is $y = \frac{a_1x^2 + b_2x + c}{2}$ The vertex form of a quadratic function is $y = \frac{a_1x^2 + b_2x + c}{2}$
- 3. What is the formula for the axis of symmetry from a quadratic function in standard form? X =
- 4. If the vertex is the highest point on the graph, it is called a **maximum**
- 5. If the vertex is the lowest point on the graph, it is called a minimum

For #6-7, graph the quadratic functions to find the zeros.



$7. y = x^2 - 2x -$		
х	У	
-1	-5	
D	-8	
1	-9	
2	-8	
3	-5	

8. Graph using a table of values. Identify all key characteristics. $y = x^2 + 8x + 17$


Axis of symmetry: $\chi = -4$ Vertex:

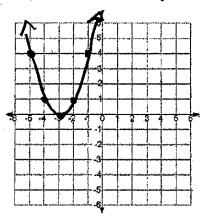
Domain:

End Behavior: As $x \to +\infty$, $y \to \underline{\hspace{1cm}}$

9. Graph using a table of values. Identify all key characteristics. $y = -2x^2 + 12x - 16$

Х	у
	4-
3	0
3	2
4	0
5	- પ્ર

Axis of symmetry: Vertex:


Domain:

Range: _

End Behavior: As $x \to +\infty$, $y \to$ _____ \leftarrow As $x \to -\infty$, $y \to$ _____ \leftarrow \bigcirc

10. Graph using a table of values. Identify all key characteristics. $y = x^2 + 6x + 9$

× y
-5 4
-4 1
-3 0
-2 1
-1 4

Axis of symmetry: $\chi = -3$

Vertex: (-3 0)

Domain:

Range: y 20

End Behavior: As $x \to +\infty$, $y \to \frac{+}{}$ \longrightarrow As $x \to -\infty$, $y \to \frac{+}{}$ \longrightarrow

11. Graph using a table of values. Identify all key characteristics. $y = (x-3)^2 - 4$

	-
х	y
1	O
2	-3
3	4
4	-3
5	Ø

Axis of symmetry: $\chi = 3$

Vertex: (3-4)

Domain: TR

Range: $\sqrt{24}$

Transformations: 3 Right

Without graphing, describe the transformations of g(x) from the parent function, f(x).

$12. f(x) = x^2;$	$g(x)=(x+4)^2+5$
Left 4	
UP 5	
,	•

13. $f(x) = x^2$; $g(x) = -\frac{1}{3}(x+7)^2 - 1$ reflected over x-axis compressed by factor 1/3 Left 7 dawn 1

14. Parent function: f(x); g(x-2)+6 $R \in \mathcal{A}$

15. Parent function: f(x); 5g(x) - 8Stretch by factor of 5 down 8

Write an equation that shows the transformations from the parent function: $y = x^2$.

16. Translated 5 units left and 3 units up.

$$49 = (x+5)^2 + 3$$

17. Reflected over the x-axis and 7 units right.

18. Vertical stretch by a factor of 4 and 3 units down.

19. Vertical compression by a factor of $\frac{1}{2}$, reflected over the x-axis, 8 units right and 2 units up.

$$y = -\frac{1}{2}(x^2 - 8)^2 + 2$$

Even/odd functions, Average rate of change, and Quadratics Review problems

20. Decide if the following functions are even, odd, or

a)
$$f(x) = 5x^3 + 2x^2$$
 - reither

b)
$$f(x) = 8x^1$$
 $\rightarrow 0$

c)
$$f(x) = 6x^2 + 5$$
 even (5x°)

21. Find the average rate of change of the function $f(x) = x^2 + 3$, over the interval [-2, 5]

22. Rewrite the function below from standard form to vertex form.

$$y = x^{2} - 22x + 5$$

$$y - 5 + 121 = x^{2} - 22x + 121$$

$$y + 116 = (x - 11)^{2}$$

$$y = (x - 11)^{2} - 116$$

23. A square is altered so that one dimension is increased by 2 inches and the other dimension is increased by 3 inches. If the area of the resulting rectangle is 90 square inches, find the area of the original square.

$$(x+3)(x+2) = 90$$
 90
 $x^2+3x+2x+4=90$
 $x^2+5x+4=90$
 $x^2+5x-84=0$
 $(x+12)(x-7)=0$
 $(x+12)(x-7)=0$
 $(x+12)(x-7)=0$
 $(x+12)(x-7)=0$
 $(x+12)(x-7)=0$

24. A rock is dropped from a bridge 300 feet above a river. The pathway that the rock takes can be modeled by the function $h(t) = -16t^2 + 300$. How long will it take the rock to reach the river?

$$-16t + 300 = 0$$

$$-16t$$

4,33 sec.

25. Pam shoots an arrow upward at a speed of 60 feet per second, from a platform 20 feet high. The path of the arrow can be modeled by the function: $h(t) = -16t^2 + 60t + 20$, where h is the height and t is the time in seconds. What is the maximum height of the arrow?

$$X = \frac{b}{aa} = \frac{-ba}{-32} =$$
 $X = 1.875$

Plug it in.

-16t² + 60t + 20

 $-16 (1.875)^{2} + 60 (1.875) + 20$ -56.25 + 112.5 + 20 5625 + 20 $\boxed{76.25}$

Vertex: (1.875, 76.25)

Maximum height: