\qquad

Monday

Write a function that models the situation (HINT: this is similar to half-life). An investment of $\$ 2000$ doubles every 5 years. Use the model to determine value of the investment in 60 years.	For compound interest, state the value of " n " for the given words: Annually: Monthly: Quarterly: Semi-annually: Daily:
Cobalt-60 has a half-life of 5 years. Write a model for this is you have 100 grams of Cobalt-60 originally. Suppose you have 100 grams of Cobalt-60 in 1980. How much is left in the year 2010? Use the model to find the answer.	You put $\$ 10,000$ into an account that pays 2% interest compounded monthly. Write a model for this.
The half-life of Plutonium-14 is approximately 25 seconds. Find the amount of Plutonium-14 left from a 6 gram sample after 100 seconds..	For the problem above, find the amount of money in the account after 12 years.
Rewrite the following numbers as a power with a base of 2. $\begin{aligned} & 16^{x} \\ & 4^{3 x} \\ & 32 \\ & 4^{(x+3)} \end{aligned}$	You put $\$ 4500$ into an account that pays 4% compounded quarterly. Write a model for this. Find the amount of money in the account above after 5 years.

Solve the equations by rewriting each side with like bases.
$4^{x+2}=4^{1-2 x}$
$8^{-3 x}=64$
$25^{-x}=125^{3-2 x}$
$3^{-x}=81$
$5^{x+3}=625$
$4^{-2 x}=16$

